Упр.5.41 ГДЗ Погорелов 7-9 класс (Геометрия)

Решение #1

Изображение 41. Докажите, что геометрическое место точек, удалённых от данной прямой на расстояние h, состоит из двух прямых, параллельных данной и отстоящих от неё на расстояние...

Рассмотрим вариант решения задания из учебника Погорелов 7 класс, Просвещение:
41. Докажите, что геометрическое место точек, удалённых от данной прямой на расстояние h, состоит из двух прямых, параллельных данной и отстоящих от неё на расстояние h.

Доказать: геометрическое место точек, удаленных от данной прямой
на расстояние h, состоит из двух прямых, параллельных данной прямой
и отстоящих от нее на расстояние h;
Доказательство:
1) Пусть a-данная прямая, а b1 и b2-прямые параллельные данной
и отстоящие от нее на расстояние h;
2) На прямых b1 и b2 отметим произвольные точки B1 и B2;
3) Через точку B1 опустим перпендикуляр B1 A1 на прямую a, данный
перпендикуляр является расстоянием между прямыми a и b1, значит:
A1 B1=h;
3) Через точку B2 опустим перпендикуляр B2 A2 на прямую a, данный
перпендикуляр является расстоянием между прямыми a и b2, значит:
A2 B2=h;
8) Таким образом, случайные точки прямых b1 и b2 удалены от
прямой a на расстояние h, значит эти прямые являются геометрическим
местом точек равноудаленных от данной прямой на расстояние h, что и
требовалось доказать.
*Цитирирование задания со ссылкой на учебник производится исключительно в учебных целях для лучшего понимания разбора решения задания.
*размещая тексты в комментариях ниже, вы автоматически соглашаетесь с пользовательским соглашением