Упр.602 ГДЗ Мерзляк Полонский 5 класс (Математика)

Решение #1

Изображение 602. Вычислите площадь поверхности и сумму длин всех рёбер куба (рис. 171), ребро которого равно 5 см.Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую...

Решение #2

Изображение 602. Вычислите площадь поверхности и сумму длин всех рёбер куба (рис. 171), ребро которого равно 5 см.Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую...
Загрузка...

Рассмотрим вариант решения задания из учебника Мерзляк, Полонский, Якир 5 класс, Вентана-Граф:
602. Вычислите площадь поверхности и сумму длин всех рёбер куба (рис. 171), ребро которого равно 5 см.
Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую вершину, называют измерениями прямоугольного параллелепипеда.
Прямоугольный параллелепипед, у которого все измерения равны, называют кубом.
Поверхность куба состоит из шести равных квадратов.
Так как куб – это частный случай прямоугольного параллелепипеда, а площадью поверхности параллелепипеда называют сумму площадей всех его граней, то площадь поверхности куба можно найти, умножив 6 (число граней) на площадь грани, которая равна произведению стороны квадрата на саму себя, то есть 5•5.
Тогда имеем, что площадь поверхности куба равна:
6•(5•5)=6•25=150 (см^2).
Так как у куба все измерения равны, то есть все рёбра куба равны друг другу, значит, чтобы найти сумму их длин, необходимо умножить длину ребра на число рёбер (а у куба, как у частного случая параллелепипеда, их 12), то есть имеем:
12•5=60 (см) – сумма длин рёбер куба.

Ответ: 60 см и 150 см^2.
*Цитирирование задания со ссылкой на учебник производится исключительно в учебных целях для лучшего понимания разбора решения задания.
*размещая тексты в комментариях ниже, вы автоматически соглашаетесь с пользовательским соглашением