Упр.588 ГДЗ Макарычев Миндюк 9 класс (Алгебра)

Решение #1

Изображение 588. (Задача-исследование.) Могут ли числа 20 и 35 быть членами арифметической прогрессии, первый член которой равен 12 и разность не равна 1.1) Предположив, что числа...

Решение #2

Изображение 588. (Задача-исследование.) Могут ли числа 20 и 35 быть членами арифметической прогрессии, первый член которой равен 12 и разность не равна 1.1) Предположив, что числа...

Решение #3

Изображение 588. (Задача-исследование.) Могут ли числа 20 и 35 быть членами арифметической прогрессии, первый член которой равен 12 и разность не равна 1.1) Предположив, что числа...

Решение #4

Изображение 588. (Задача-исследование.) Могут ли числа 20 и 35 быть членами арифметической прогрессии, первый член которой равен 12 и разность не равна 1.1) Предположив, что числа...
Загрузка...

Рассмотрим вариант решения задания из учебника Макарычев, Миндюк, Нешков 9 класс, Просвещение:
588. (Задача-исследование.) Могут ли числа 20 и 35 быть членами арифметической прогрессии, первый член которой равен 12 и разность не равна 1.
1) Предположив, что числа 20 и 35 являются членами арифметической прогрессии, выразите каждое из них через d, n или m, где d — разность прогрессии, n — номер члена, равного 20, m — номер члена, равного 35. Докажите, что n-1/m-1 = 8/23
2) Полагая, что n-1 = 8k и m-1=23k, где k принадлежит N, выразите тип через k. Обсудите, как, выбрав значение k, большее 1, можно получить арифметическую прогрессию, удовлетворяющую условию задачи. Выполните необходимые вычисления.
3) Объясните, почему значение k = 1 приводит к противоречию с условием задачи.
*Цитирирование задания со ссылкой на учебник производится исключительно в учебных целях для лучшего понимания разбора решения задания.
*размещая тексты в комментариях ниже, вы автоматически соглашаетесь с пользовательским соглашением