Упр.236 ГДЗ Макарычев 7 класс (Алгебра)

Решение #1

Изображение Может ли иметь положительный корень уравнение: а) (х + 5)(x + 6) + 9 = 0; б) x2 + 3х + 1 = 0?а)  (x+5)(x+6)+9=0Предположим, что x>0. Тогда, левая часть...

Решение #2

Изображение Может ли иметь положительный корень уравнение: а) (х + 5)(x + 6) + 9 = 0; б) x2 + 3х + 1 = 0?а)  (x+5)(x+6)+9=0Предположим, что x>0. Тогда, левая часть...
Загрузка...

Рассмотрим вариант решения задания из учебника Макарычев, Миндюк 7 класс, Просвещение:
Может ли иметь положительный корень уравнение:
а) (х + 5)(x + 6) + 9 = 0;
б) x2 + 3х + 1 = 0?

а) (x+5)(x+6)+9=0
Предположим, что x > 0. Тогда, левая часть уравнения будет положительна, но по условию задачи она равна нулю. Получили противоречие с условием.
Если x > 0, то (x+5)(x+6) > 0, но (x+5)(x+6)+9=0.
Следовательно, наше предположение неверно. Уравнение не может иметь положительных корней.

б) x^2+3x+1=0
Предположим, что x > 0. Тогда, левая часть уравнения будет положительна, но по условию задачи она равна нулю. Получили противоречие с условием.
Если x > 0, то x^2+3x > 0, но x^2+3x+1=0.
Следовательно, наше предположение неверно. Уравнение не может иметь положительных корней.
*Цитирирование задания со ссылкой на учебник производится исключительно в учебных целях для лучшего понимания разбора решения задания.
*размещая тексты в комментариях ниже, вы автоматически соглашаетесь с пользовательским соглашением