Ответом к заданиям 1-12 является целое число или конечная десятичная дробь ("5", "0,005"...). Запишите ответ в поле ответа БЕЗ ПРОБЕЛОВ И ДРУГИХ ЛИШНИХ СИМВОЛОВ, а затем нажмите кнопку "ПРОВЕРИТЬ".
|
| |||
Флакон шампуня стоит 190 рублей. Какое наибольшее число флаконов можно купить на 1000 рублей во время распродажи, когда скидка составляет 35%? |
| |||
Ha диаграмме показана среднемесячная температура воздуха в Санкт-Петербурге за каждый месяц 1999 года. По горизонтали указываются номера месяцев, по вертикали — температура в градусах Цельсия. Определите по диаграмме, сколько месяцев второго полугодия 1999 года средняя температура была ниже 15 °С. |
| |||
Ha клетчатой бумаге с размером клетки 1x1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AB. |
| |||
B случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что орёл выпадет ровно три раза.
|
| |||
Найдите корень уравнения |
| |||
B треугольнике ABC угол C равен 90°, . Найдите sin В. |
| |||
B прямоугольном треугольнике угол между высотой и медианой, проведёнными из вершины прямого угла, равен 32°. Найдите больший из острых углов этого треугольника. Ответ дайте в градусах.
|
| |||
Ha рисунке изображён график функции у = f(x). Найдите точку, в которой функция f(x) принимает наибольшее значение на отрезке [-4; 3]. |
| |||
8. Найдите объём многогранника, изображённого на рисунке (все двугранные углы прямые). |
| |||
Найдите значение выражения |
| |||
Ёмкость высоковольтного конденсатора в телевизоре Ф. Параллельно с конденсатором подключён резистор с сопротивлением Ом. Bo время работы телевизора напряжение на конденсаторе = 9 кВ. После выключения телевизора напряжение на конденсаторе убывает до значения U (кВ) за время, определяемое выражением (с), где — постоянная. Определите напряжение на конденсаторе, если после выключения телевизора прошло 33 секунды. Ответ дайте в кВ (киловольтах). |
| |||
По двум параллельным железнодорожным путям навстречу друг другу следуют скорый и пассажирский поезда, скорости которых равны соответственно 75 км/ч и 30 км/ч. Длина пассажирского поезда равна 750 метрам. Найдите длину скорого поезда, если время, за которое он прошел мимо пассажирского поезда, равно 36 секундам. Ответ дайте в метрах. |
| |||
Найдите точку минимума функции |
| |||
а) Решите уравнение б) Найдите все корни этого уравнения, принадлежащие отрезку |
| |||
Диаметр окружности основания цилиндра равен 26, образующая цилиндра равна 21. Плоскость пересекает его основания по хордам длины 24 и 10. Расстояние между этими хордами равно . а) Докажите, что центры оснований цилиндра лежат по разные стороны от этой плоскости. б) Найдите угол между этой плоскостью и плоскостью основания цилиндра. |
| |||
Решите неравенство |
| |||
Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке М. Точки A2, B2 и C2 — середины отрезков MA, MB и MC соответственно.
а) Докажите, что площадь шестиугольника A1B2C1A2B1C2 вдвое меньше площади треугольника ABC. б) Найдите сумму квадратов всех сторон этого шестиугольника, если известно, что AB = 5, BC = 8 и AC = 10. |
| |||
31 декабря 2014 года Дмитрий взял в банке 4 290 000 рублей в кредит под 14,5% годовых. Схема выплаты кредита следующая — 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 14,5%), затем Дмитрий переводит в банк x рублей. Какой должна быть сумма x, чтобы Дмитрий выплатил долг двумя равными платежами (то есть за два года)?
|
| |||
Найдите все значения а, при каждом из которых уравнение имеет хотя бы один корень. |
| |||
Можно ли привести пример пяти различных натуральных чисел, произведение которых равно 792 и а) пять; б) четыре; в) три из них образуют геометрическую прогрессию? |
Результаты:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |